Motion sharpening and contrast: Gain control precedes compressive non-linearity?
نویسندگان
چکیده
Blurred edges appear sharper in motion than when they are stationary. We (Vision Research 38 (1998) 2108) have previously shown how such distortions in perceived edge blur may be accounted for by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. If the form of the transducer is fixed (independent of contrast) for a given speed, then a strong prediction of the model is that motion sharpening should increase with increasing contrast. We measured the sharpening of periodic patterns over a large range of contrasts, blur widths and speeds. The results indicate that whilst sharpening increases with speed it is practically invariant with contrast. The contrast invariance of motion sharpening is not explained by an early, static compressive non-linearity alone. However, several alternative explanations are also inconsistent with these results. We show that if a dynamic contrast gain control precedes the static non-linear transducer then motion sharpening, its speed dependence, and its invariance with contrast, can be predicted with reasonable accuracy.
منابع مشابه
Motion blur and motion sharpening: temporal smear and local contrast non-linearity
Blurred images may appear sharper when drifting than when stationary. But, paradoxically, moving sharp edges may appear more blurred. To resolve this paradox, the perceived sharpness of drifting, blurred, square wave gratings was compared with that of their static analogues over a range of speeds, blurs and spatial frequencies. Both motion blur and motion sharpening occurred, depending upon the...
متن کاملSimulation of Retinal Contrast Gain Control Mechanisms
I present a simulation of contrast gain control mechanisms operating among transient M cells in the monkey s retina in order to investigate the spatial consequences of this interaction The simulation stages include a realistic viewing model non linear receptor model linear spatial ltering and a saturating output function Contrast gain control is introduced by pooling recti ed signals from on an...
متن کاملDoes early non-linearity account for second-order motion?
A contrast-modulated (CM) pattern is formed when a modulating or envelope function imposes local contrast variations on a higher-frequency carrier. Motion may be seen when the envelope drifts across a stationary carrier and this has been attributed to a second-order pathway for motion. However, an early compressive response to luminance (e.g. in the photoreceptors) would introduce a distortion ...
متن کاملSeeing blur: 'motion sharpening' without motion.
It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) wit...
متن کاملMotion blur and motion sharpening in the human visual system
The effect of motion sharpening upon blur discrimination thresholds was examined for a range of speeds and blur widths. Blur discrimination thresholds were measured for drifting edges whose blur was either physically or perceptually constant. Under conditions where edges were kept at a constant physical blur width, discrimination thresholds rose as a function of speed as previously reported. Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 43 شماره
صفحات -
تاریخ انتشار 2003